

Ecosystem monitoring and adaptive management under climate change scenarios

Blended International course founded by ERASMUS+ KA131 - (BIP program)

Year 2024

Virtual component scheduled from March 15th to May 24th and mobility week in Italy from June 3rd to 7th

Partnership: teachers and students

COURSE SYLLABUS

Aims and brief description

Adaptive management entails a solid understanding of ecosystems and their dynamics. Therefore, having standardized monitoring protocols is essential. Periodic standardized observations support a thorough understanding of ecosystem diversity and functioning, as well as the factors shaping them. Thus updated standardized monitoring are pivotal for adequate ecosystem modeling under different scenarios of global change.

In this course, students will learn the fundamentals of ecosystem monitoring and acquire specific methodological approaches and tools that focus on various ecological facets, including soils, wildlife, forest diversity, and habitats, both in natural and altered conditions. Moreover, students will learn the fundamentals of monitoring data analysis and modeling, with particular attention to information and tools supporting adaptive management

Meeting Time

Lectures (virtual): Friday 10:00 to 13:00 (see schedule below) Mobility (Italy): all day (see schedule below)

Instructors

- Prof. Maria Laura Carranza (carranza@unimol.it); Anna Loy (a.loy@unimol.it); Michele Innangi (michele.innangi@unimol.it); Mirko Di Febbraro (mirko.difebbraro@unimol.it); Claudio Colombo (colombo@unimol.it); Erica Di Iorio (erika.diiorio@unimol.it) University of Molise

- Prof Celia Herrero de Aza (celia.herrero.aza@uva.es); Irene Ruano Benito (irene.ruano@uva.es), Universidad de Valladolid, Spain

- Prof. Domenico Morabito, Univeristy of Orleans, France (domenico.morabito@univ-orleans.fr)
- Prof. Peter Massányi, Univeristy of Nitra, Slovakia (peter.massanyi@uniag.sk)
- Prof. Rafael Barrientos Yuste, Complutense Univeristy of Madrid, Spain (rafabarr@ucm.es)

Description

This programme provides students with basic knowledge and practical activities on Ecosystem monitoring and adaptive management under climate change scenarios, emphasizing the following major topics:

- Ecosystem monitoring and adaptive management
- Global change ecology main drivers of global change
- Forest monitoring modelling and management
- Soil monitoring modelling and management
- wildlife monitoring, threats assessment and global change
- Habitats monitoring modelling and management
- Global change, pollution reclamation and human health
- Data Science of Environment and Natural Resources
- Analysis of environmental data and modelling

Format

The BIP course comprises 24 hours of online lectures (synchronous) and 32 hours of in-person field and lab work for a total of **7 ECTS** (European Credit Transfer and Accumulation System). The applied component will take place during the mobility week in Italy.

Evaluation

Based on assignments and presence week activities project

Course structure and topics

Lectures

Date	Topics	Instructor	Assignment
March 15	Title: Course Presentation. Topics to be covered during online lessons	Maria Laura	questionary
(9:00 to 13:00)	and practical activities to be implemented throughout the mobility	Carranza,	
	week.	(University of	
	Arguments: Global change ecology a new discipline: principles, and	Molise)	
	key concepts. Research Approaches and tools for analyzing and		
	modelling the Ecology of Global Change. Organization levels of life and		
	global change effects. The importance of standardized ecosystem		
	monitoring in identifying adaptive strategies to address global change.		
	The Anthropocene – sustainability and USG Sustainability Goals: origin,		
	impacts of Contemporary Human Civilizations on ecosystems (e.g. land		
	use change, Pollution of air, water and soils). Effects on climate change		
	on emerging risks for food and feed safety. Climate crisis and soils.		

	Interaction between Anthropogenic Stressors. Vulnerability to Global		
	Change. Ecosystems response (Feedback, Collapse, Resilience)		
	Elements of Adaptive Management. Climate Mitigation.		
	Some study cases and instruments for monitoring (in situ and using		
	remote sensing) the effects of global change and of restoration actions		
	on ecosystems		
	Suggested reading		
	- Rosenblum, E. B. (2020) Global Change Biology. The Study of Life on a		
	Rapidly Changing Planet, Oxford University Press, USA		
	- Soil and Climate change https://www.eea.europa.eu/signals-		
	archived/signals-2019-content-list/articles/soil-land-and-climate-		
	change		
	- FESA (Furgnean Food Safety Authority) Maggiore A Afonso A		
	Barrucci E. De Sanctis G. 2020. Climate change as a driver of emerging		
	risks for food and feed safety, plant, animal health and nutritional		
	quality EESA supporting publication		
	https://ofca.onlinelibrary.wiley.com/doi/abs/10.2002/sp.ofca.2020 EN		
March 22	1001 Title: Wildlife wilnershility te elimete ehenge	Annalou	Tashnisal
Warch 22	Argumenter Assessing species' wild prohibitive to slimete shange is a	Anna Loy,	detechent
(9:00 to	Arguments: Assessing species vulnerability to climate change is a	(University Of	interpretatio
13:00)	prerequisite for developing effective strategies to conserve them. The	wouse)	interpretatio
,	module will provide the fundamentals for assessing the climate change		n and
	vulnerability of wildlife (CCVA), describing key concepts, terms, steps		comments
	and considerations. The module will also describe how CCVAs can be		
	used to inform IUCN Red List assessments of extinction risk. It will also		
	include case studies from the literature and from our research team.		
	Suggested reading		
	- Foden, W.B. and Young, B.E. (eds.) (2016). IUCN SSC Guidelines for		
	Assessing Species' Vulnerability to Climate Change. Version 1.0.		
	Occasional Paper of the IUCN Species Survival Commission No. 59.		
	Cambridge, UK and Gland, Switzerland: IUCN Species Survival		
	Commission. x+114pp.		
	(https://portals.iucn.org/library/sites/library/files/documents/SSC-OP-		
	<u>059.pdf</u>)	-	
April 5	Title : The impact of land use change and new human infrastructures	Rafael	report on
(0.00 to	on wildlife: the importance of knowing the actual mortality.	Barrientos	the topic in
(9.00 10	Arguments: The natural habitats encroachment by humans is	Yuste,	depth
13.00)	experiencing unprecedented levels. One of the main impacts is the	Univeristy	
	mortality that human infrastructures (mainly roads, railways, power	Complutense	
	lines or wind farms) cause on wildlife. Knowing the actual mortality	of Madrid	
	without falling into biases and how it can affect the survival of		
	impacted populations is an essential objective in monitoring		
	ecosystems under global change.		
	Suggested reading		
	- Barrientos R, Martins RC, Ascensão F, D'Amico M, Moreira F, Borda-		
	de-Água L (2018) A review of searcher efficiency and carcass		
	persistency in infrastructure-driven mortality assessment studies.		
	Biological Conservation 222: 146-153.		
	- Borda-de-Água L, Barrientos R, Beja P, Pereira HM (2017) Railway		
	Ecology. Springer. 320 pp.		
	(https://link.springer.com/book/10.1007/978-3-319-57496-7)		
	- van der Ree, R., Smith, D.J., Grilo, C. (Eds.), 2015. Handbook of Road		
	Ecology. John Wiley and Sons, Hoboken		
	https://transportecology.info/		
	https://www.iene.info/		
April 12	Title: Dead wood inventory and monitoring for ecosystems	Celia Herrero	report on
	management	Aza	the topic in
	Arguments:		depth

(9:00 to	Dead wood is an important component of forest ecosystems with	(University of	
13:00)	several crucial ecological functions, like carbon sequestration or	Valladolid)	
	contribution to energy flow and nutrient cycles s well as to provide		
	habitat for a large proportion of forest species. As the importance of		
	dead wood for biodiversity has become widely acknowledged several		
	international schemes for Sustainable Forest Management (MCPFE in		
	Europe, CIFOR in tropical forests) have included "dead wood" as		
	indicators of biodiversity.		
	Measures of dead wood are often incorporated in studies and		
	protocols that monitor the health and biodiversity of forests, including		
	national forest inventories, such as those of Canada or USA. The		
	sampling design and estimation procedures have important		
	consequences for the precision and accuracy of the estimators and for		
	the effort required.		
	In this module we will teach and train new researchers to implement a		
	standardized sampling approach that assures a comparable knowledge		
	on quantitative and qualitative patterns of dead wood in forests.		
	Standardized updated data on dead wood is essential for ecosystem		
	adaptive management at local, regional and global sale. Furthermore,		
	a particular attention will be given to the variety of factors influencing		
	the amount of dead wood such as climate, site productivity, tree		
	species composition, disturbance regime (natural and/ or		
	anthropogenic), time since last disturbance, characteristics of the		
	previous cohort of trees, current forest management strategy and		
	successional stage.		
	Suggested reading:		
	- Brin et al., 2008. Changes in quantitative patterns of dead wood in		
	maritime pine plantations over time. Forest Ecology and Management,		
	256: 913-921, 10.1016/j.foreco.2008.05.042		
	- Herrero, C., Monleon, V.J., Gómez, N., Bravo, F. 2016. Distribution of		
	dead wood volume and mass in mediterranean Fagus sylvatica L.		
	forests in Northern Iberian Peninsula. Implications for field sampling		
	inventory. Forest Systems 25 (3), e069-e081. DOI:		
	nttp://dx.doi.org/10.5424/fs/2016252-09009.		
April 10	Title: Monitoring forest associations for adaptive management in	Irono Buano	Bonort on
April 19	response to Clobal Change	Renite	the topic in
(9:00 to	Argument: In this training cossion, we will evalure accesustem	(University of	dopth
13:00)	management in response to global change, highlighting the crucial role	(Oniversity of Valladolid)	depth
-	of data in effective decision-making. The field of forest science relies	vallauoliu)	
	heavily on a wealth of data to draw accurate conclusions. Our session		
	will explore the types of data required strategies for obtaining		
	personal data, and the availability of open data options. The format		
	includes a practical exercise during the online class. linking to the on-		
	site activities planned for the June week. The objective is to		
	underscore the crucial link between sound management practices and		
	robust data support within the context of global change.		
	Suggested reading:		
	- Kershaw, J.A, Ducey, M.J., Beers, T.W., Husch, B. 2016 Forest		
	Mensuration, 5th Ed. Wiley		
	- Duvemo, K., & Lämås, T. (2006). The influence of forest data quality		
	on planning processes in forestry. Scandinavian Journal of Forest		
	Research, 21(4), 327-339.		
	https://forestexplorer.gsic.uva.es/es/index.html		
	https://educawood.gsic.uva.es/		
April 26	Title : Climate change and food and feed safety – Exploring the effects	Peter	report on
	of environmental factors change on livestock reproduction.	Massányi	the topic in
			depth

(9:00 to 13:00)	Arguments: Food chain of humans, historical issues in food intake, pollution of environment, contamination by medicines (e.g. hormones, antibiotics, painkillers) and poisons (e.g. herbicides, insecticides, anti- fungal), their transfer in environment, transfer to the food chain, foodstuffs of plant and animal origin, risks of contamination of food and feed, accumulation of contaminants in tissues and organs of humans and animals, disruption of animal systems, control mechanisms of food chain contamination in European Union. Standardized monitoring and assessment of food and feed quality. Producing of healthy and safe foods in the Anthropocene. Assessment of the effects of global change on the analyze information about pollution of the environment related to the transfer of contaminants into the food chain. European legislation- monitoring standards of quality. <u>Suggested reading</u> - EFSA (European Food Safety Authority), Maggiore A, Afonso A, Barrucci F, De Sanctis G, 2020. Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA supporting publication <u>https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/sp.efsa.2020.EN- 1881</u>	(Univeristy of Nitra)	
May 3 (9:00 to	Title: Soils and climate change Arguments: Climate change significantly influences soil, and	Claudio Colombo,	report on the topic in
(9:00 to 13:00)	Arguments: Climate change significantly influences soil, and alterations in land use and soil conditions can either amplify or mitigate the effects of climate change. Addressing the climate crisis, ensuring sufficient food production, and adapting to a changing climate are impossible without healthier soils and sustainable land and soil management. A potential solution could involve preserving and restoring crucial ecosystems, allowing nature to capture carbon from the atmosphere. Our session will explore the pivotal role of soil in natural ecosystems, focusing on carbon sequestration and water infiltration. Moreover, the session will examine the interplay between declining soil quality and climate change, specifically addressing issues such as soil erosion and land degradation. The session will also delve into insights on the role of soil biological communities in mitigating the effects of climate change. Particular attention will be given to soil monitoring protocols and modelling approaches <u>Suggested reading</u> - Rosenblum, E. B. (2020) Global Change Biology. The Study of Life on a Rapidly Changing Planet. Oxford University Press. USA - Soil and Climate change <u>https://www.eea.europa.eu/signals- archived/signals-2019-content-list/articles/soil-land-and-climate-</u>	Colombo, Erika Di Iorio, Michele Innangi (University of Molise)	the topic in depth
May 17	change Title: Management of polluted sites using phyto-remediation	Domenico	report on
(9:00 to	Arguments: The pollution of soil gathered research attention due to its	Morabito	the topic in
(9:00 to 13:00)	negative environmental and health impact. Mining activities and the associated wastes contribute to a large extent to environmental pollution, in particular through the release of trace elements (TMEs). The use of amendments alone or in combination with plants is an effective solution for stabilizing TMEs and improving the agronomic quality of techno-soils, this technique is known as phytoremediation. Insofar as the aim is to produce recoverable biomass, we call it phyto- management. It consists in planting vegetation to help reduce the spread of pollutants to the water table or neighboring areas. In this goal, plant selection and amendment must be efficiently selected. This seminar will focus on the phyto-stabilization of	(Univeristy of Orleans)	depth

metal(loid) contaminated soils, with a focus on Salicaceae as potential	
phyto-stabilizor and the effects of diverse amendments, organic and	
inorganic, on the different components of the soil-plant continuum,	
i.e. soil, metal(loid)s, microorganisms, and plant, especially the	
physiological response of the plant roots to amendments.	
To do this, we will study a specific case involving a site polluted by	
arsenic and lead and which has been rehabilitated by phyto-	
management. Five years after the implementation of a phyto-	
management strategy using biochar on a parcel of the former	
Pontgibaud mine site in France, we show the development of	
vegetation on this site which was previously devoid of vegetation. This	
approach by assisted phytoremediation is an efficient solution to limit	
the propagation of pollutants by wind and percolating water from	
mining technosols. In addition, the low accumulation of TMEs found in	
the aerial parts of the willows planted on the site and the diversity of	
microorganisms observed in the new soil formed suggest a	
refunctionalization process.	
Suggested reading	
- Heavy metal toxicity and tolerance in plants (2023), Wiley Editor,	
ISBN: 978-1-119-90646-9,	

Mobility week

Date	Topics	Instructor	Assignm.
June 3, 4, 5	Field work in Alto Molise Landscape and on the garden of the	Rafael Barrientos	Projects
Giardino	Apennine flora of Capracotta (Molise Region – Italy)	Yuste, Univeristy	
della Flora	https://www.giardinocapracotta.unimol.it/en/home-2/	Complutense of	
Appenninica	Visit to Protected Areas. With overnight stay at the structures of	Madrid;	
di	the Apennine Flora Garden.	Prof Celia Herrero	
Capracotta		de Aza, Universidad	
	Putting ecosystem monitoring into action. Implementation of	de Valladolid; Prof	
	standardized field monitoring approaches in the field. All the	Irene Ruano Irene	
	data collected in the field will then be analyzed in a dedicated	Ruano Benito,	
	lab.	Universidad de	
	-Dead wood monitoring. Field measurement of dead wood as a	Valladolid; Prof.	
	base for monitoring forest ecosystem health and biodiversity.	Domenico Morabito,	
	The collected data will be sued for estimating several forest	Univeristy of	
	features as health, biomass, biodiversity, all aspects that support	Orleans; Prof. Peter	
	their sustainable and adaptive management (Prof. Celia Herrero	Massányi, Univeristy	
	de Aza)	of Nitra; Prof M	
	- Tree inventory (identification and mapping) of the garden of	Laura Carranza,	
	the Apennine flora using a standardized approach implemented	Michele Innangi,	
	in the app EducaWood. This app allows to find trees and	Mirko Di Febbraro;	
	annotate them. Identify tree species, measure heights and	Claudio Colombo,	
	diameters, set tree statuses, upload tree photos.	Erica Di Iorio, and	
	-Monitoring the impact of land use change and new human	lab EnviXLab	
	infrastructures on wildlife. Specifically, students will learn by	(University of	
	field experience to test searcher efficiency of dead wildlife and	Molise)	
	the other carcass persistence monitored by camera-traps (Prot		
	Ratael Barrientos)		
	- Soil monitoring. Soil profile sampling. Interpretation of a soil		
	Former to of coll found compliant and functional groups. Coll		
	Elements of soil faund sampling, and functional groups. Soil		
	lorio Micholo Innangi)		
	Habitat monitoring following the Habitate directive protocol		
	- Habitat monitoring following the Habitats directive protocol.		
	vegetation plots, for monitoring habitat diversity, structure and		

	functional features (Prof M Laura Carranza, Michele Innangi, Dott Marco Varricchione). - elements of citizen science. The role of CS as a monitoring tool. Field data collection on iNaturalist platform (Prof M Laura Carranza, Michele Innangi, Dott Federica Pontieri).		
June 6, 7 (Pesche)	Hands on data analysis and modelling on computer lab (Dep Biosciences and Territory) Pesche Software Rstudio Desktop (https://posit.co/download/rstudio-desktop/) EducaWood (https://educawood.gsic.uva.es/) QGis (https://www.qgis.org/it/site/forusers/download.html) Past https://www.nhm.uio.no/english/research/resources/past/ iNaturalsit (https://www.inaturalist.org/) JavaClimateModel (https://jcm.chooseclimate.org/)	Rafael Barrientos Yuste, Univeristy Complutense of Madrid; Prof Celia Herrero de Aza, Universidad de Valladolid; Prof Irene Ruano Irene Ruano Benito, Universidad de Valladolid; Prof. Domenico Morabito, Univeristy of Orleans; Prof. Peter Massányi, Univeristy of Nitra; Prof M Laura Carranza, Michele Innangi, Mirko Di Febbraro; Claudio Colombo, Erica Di Iorio, and Iab EnviXLab (Univeristy of Molise)	Projects

Readings

March 15

- Rosenblum, E. B. (2020) Global Change Biology. The Study of Life on a Rapidly Changing Planet. Oxford University Press. USA

- Soil and Climate change <u>https://www.eea.europa.eu/signals-archived/signals-2019-content-list/articles/soil-land-and-climate-change</u>

- EFSA (European Food Safety Authority), Maggiore A, Afonso A, Barrucci F, De Sanctis G, 2020. Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA supporting publication <u>https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/sp.efsa.2020.EN-1881</u>

March 22

- Foden, W.B. and Young, B.E. (eds.) (2016). IUCN SSC Guidelines for Assessing Species' Vulnerability to Climate Change. Version 1.0. Occasional Paper of the IUCN Species Survival Commission No. 59. Cambridge, UK and Gland, Switzerland: IUCN Species Survival Commission. x+114pp. (<u>https://portals.iucn.org/library/sites/library/files/documents/SSC-OP-059.pdf</u>

April 5

Barrientos R, Martins RC, Ascensão F, D'Amico M, Moreira F, Borda-de-Água L (2018) A review of searcher efficiency and carcass persistency in infrastructure-driven mortality assessment studies. Biological Conservation 222: 146-153.
Borda-de-Água L, Barrientos R, Beja P, Pereira HM (2017) Railway Ecology. Springer. 320 pp.

(https://link.springer.com/book/10.1007/978-3-319-57496-7)

- van der Ree, R., Smith, D.J., Grilo, C. (Eds.), 2015. Handbook of Road Ecology. John Wiley and Sons, Hoboken https://transportecology.info/

https://www.iene.info/

April 12

- Brin et al., 2008. Changes in quantitative patterns of dead wood in maritime pine plantations over time. Forest Ecology and Management, 256: 913-921, 10.1016/j.foreco.2008.05.042

- Herrero, C., Monleon, V.J., Gómez, N., Bravo, F. 2016. Distribution of dead wood volume and mass in mediterranean Fagus sylvatica L. forests in Northern Iberian Peninsula. Implications for field sampling inventory. Forest Systems 25 (3), e069-e081. DOI: http://dx.doi.org/10.5424/fs/2016252-09009.

April 19

- Kershaw, J.A, Ducey, M.J., Beers, T.W., Husch, B. 2016 Forest Mensuration, 5th Ed. Wiley

- Duvemo, K., & Lämås, T. (2006). The influence of forest data quality on planning processes in forestry. Scandinavian Journal of Forest Research, 21(4), 327-339.

https://forestexplorer.gsic.uva.es/es/index.html

https://educawood.gsic.uva.es/

April 26

- EFSA (European Food Safety Authority), Maggiore A, Afonso A, Barrucci F, De Sanctis G, 2020. Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. EFSA supporting publication <u>https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/sp.efsa.2020.EN-1881</u>

May 3

- Soil and Climate change <u>https://www.eea.europa.eu/signals-archived/signals-2019-content-list/articles/soil-land-and-climate-change</u>

May 17

- Heavy metal toxicity and tolerance in plants (2023), Wiley Editor, ISBN: 978-1-119-90646-9,