

Adsorption on medical carbon

Task 1

The purpose of this activity is to perform the adsorption of organic acids (acetic acid) on activated carbon and to demonstrate medical properties of *carbo medicinalis*.

Procedure

Dilute 0,5 mol/dm³ of acetic acid with distilled water in the conical flasks (marked as A and B) in accordance with the following table:

Flask	CH ₃ COOH 0,5 mol/dm ³	H ₂ O	Concentration
A	12 cm ³	38 cm ³	
В	3 cm ³	47 cm ³	

From flask A take 10 cm^3 of acetic acid solution and transfer to the new one (marked as A1) and from flask B move 10 cm^3 of the solution to the new flask marked as B1.

Add a few drops of phenolphtalein to flasks A1 and B1 and then titrate each of them with standard solution of NaOH $(0, 1 \text{ mol/dm}^3)$.

Calculate the real concentrations of obtained acetic acid solutions, using the following formula:

$C_{CH3COOH} \cdot V_{CH3COOH} = C_{NaOH} \cdot V_{NaOH}$

Add 1 g of activated carbon to the flasks A and B (please weigh the carbon precisely), and then gently shake them for 30 minutes. After that, filtrate the contents of the flasks. Take 10 cm³ from each flask and put in the new conical flasks marked A2 and B2. Add the indicator (phenolphtalein) and titrate with 0,1 mol/dm³ of NaOH solution. Calculate the concentration of acetic acid in the flasks after adsorption.

Knowing the concentration values of the acid before adsorption (C_0) and after adsorption (C), calculate the number of moles of acetic acid, which has been adsorbed by 1 gram of activated carbon.

 X_A = (C₀ - C) · V_A ; X_B = (C₀ - C) · V_B

where:

- X number of moles of adsorbed acid,
- V volume of the solution, for flasks A and B: V = 40 cm^3
- C_{\circ} concentration of the acid before adsorption [mol/dm³]
- C concentration of the acid after adsorption $[mol/dm^3]$

Note the results in the table:

Flask	A	В
C_0 - concentration of the acid		
before adsorption [mol/dm ³]		
C - concentration of the acid		
after adsorption [mol/dm ³]		
X - number of moles of acetic acid		
adsorbed by 1 gram of activated		
carbon		

Compare the influence of acetic acid concentration on the adsorption abilities of activated carbon.

