Hydrolases

Alkaline and Acid Phosphatase

E.C.3.1.3.1. Alkaline Phosphatase (ALP)

The aim:

The estimation of indicative enzyme - alkaline phosphatase

Properties:

- Phosphohydrolase of orthophosphate monoesters
- pH 8,5-10,5
- Heterogenic enzyme with low specificity against substrate
- Izoenzymes can differ with electrophoretic motility and thermostability, they are named in accordance to tissue of origin

Localization:

- Bones (50-60% of total activity)
- Intestine wall (30% of total activity)
- Liver (10-20% of total activity)
- Placenta
- Activity of enzyme was detected also in body fluids (blood plasma, lymph, urine, seminal plasma)

 In physiological status isoenzymes from bones (from osteoblasts) and from liver dominate in plasma. Isoform from liver is secreted with bile that is why its concentration increases when difficulties in bile flow from liver to intestine appear eg. in case of bile tract occlusion caused by gall stones or tumor.

Meaning:

 Indicative enzyme determined in diseases with bile stasis, fractures of bones, rachitis, osteomalacia, tumor metastases to bones and hyperfunction of parathyroid glands.

The determination of activity:

 ALP hydrolyses disodium phenolphosphate. The amount of liberated phenol (the measure of enzyme activity) is determined by colorimetric method by use of Folin- Ciocaltau reagent.

Isoenzymes of alkaline phosphatase

- Intestinal easily inactivated by high temperature (56°C during 10 min), inhibited by phenylalanine
- Placental the most resistant to heating (retains the activity during heating up to 65° C during 30 min, inhibited by phenylalanine
- Liver migrates the most quickly during electrophoresis followed by isoforms from bones, placenta and intestine

Isoform from bones:

- High activity during maturation, later gradual decrease and the increase again around 50 years of age
- The increase of activity in fractures of bones, bone cancers, hyperparathyreoidism (tumor of parathyroid glands)

Isoform from liver:

- Activity increases in cholestasis, liver tumors, liver inflammation
- Some medicines can induce the activity of liver isoform (hydantoin, chloropromazin)

- The modification of liver isoform is isoenzyme induced by corticosteroids (C-ALP)
- It is produced by hepatocytes surrounding bile tracts
- It is detected in dogs
- The activity of this isoenzyme increases when the content of corticoids (either endogenous or exogenous) increases eg:
 - Hiperadrenocortisism (hyperfunction of adrenal cortex Cushing syndrome
 - Long lasting therapy with corticoids

How to differentiate isoenzymes?

Inhibition with levamizol:

 Activity of isoenzyme induced by corticoids and from intestine will not change

 Activity of remaining isoenzymes (liver, bones, placenta) will decrease

Placental isoform:

 Activity increases slightly during physiological pregnancy while significantly during pathologies

Intestine isoform:

- Activity of this isoform is present in patients with blood group A or 0 due to, among others, binding of this isoform to erythrocytes of these blood groups.
- More intestine isoform is detected in these patients after eating of fatty nutrients (for 25%)
- Increase of activity may appear in diseases of intestine, liver cirrhosis and in dialysed patients.

Cancer-placental isoform :

 4 fractions which are detected in cancers of ovaries, lungs, mammary glands, pancreas, colon are known

Reference values for alkaline phosphatase

Activity of ALP in blood plasma [U/L]

Horses	109-315
Cattle	41-116
Sheep	50-229
Goats	75-228
Pigs	92-294
Dogs	20-155
Cats	23-107
Rabbits	90-145
Golden hamster	99-186

Acid phosphatase:

Lysosomal enzyme that hydrolyses monophosphate esters at optimum pH 5
There are few isoforms of enzyme in prostata, liver, kidneys, erythrocytes, spleen, blood platelets, osteoclasts,

Isoenzymes of acid phosphatase

- Clinical meaning of prostata isoenzyme:
- Isoenzyme from prostata [1] (PAP, ACP3, ACPP), covers 30% of total activity of acid phosphatase
- 2. Is inhibited by tartrate
- 3. Activity increases in the course of prostata cancer, myocardial infarction, thrombotic inflammation of veins
- 4. Good marker for monitoring successful cancer therapy and renewal of cancer

- Isoenzyme [2] tartrate resistant acid phosphatase (ACP5,TRACP-5) – known also as purple acid phosphatase
- Contains iron ion what causes purple colour of fraction during electrophoretic staining
- Main localisation of this isoform osteoclasts, lung macrophages, dendritic cells. Isoform is cytochemical marker of some forms of leukemia and Gaucher disease

Reference values of acid phosphatase

Astivity of ACP in plasma	[U/L]
Dogs	30-120
Cats	20-63

Half-life period of acid phosphatase is different in different animal species.

The change of activity in cats is detected after 6 hours while in dogs after 3 days.

When the determination of acid phosphatase should be done?

- Suspicion of liver and bile tract diseases (inflammation of liver, differentiation of jaundice, damage to liver by drugs, obturation of bile tracts due to gall stones or cancer).
- Suspicion of diseases of bone system (pain of bones, pathological fractures in the course of cancers).
- Disturbances of calcium and vitamin D3 balance (osteomalacia, hyperfunction of parathyroid glands, in case of symptoms like: deformities in bone system, radiographic and scyntigraphic alterations in bones.
- Suspicion of cancers that produce acid phosphatase.

Indicative enzymes

Tabela 9	9.2.	Klasyfikacja	enzymów	(1)	używanych	rutynowo	w	diagnostyce
----------	------	--------------	---------	-----	-----------	----------	---	-------------

Klasa	Nazwa rekomendowana	Nazwa zwyczajowa	Nazwa standardowa	Nazwa systematyczna
oksydore- duktazy	dehydrogenaza mleczanowa	LDH	LD	oksydoreduktaza L-mleczan: NAD
	dehydrogenaza glukozo-6 fosforanowa	G-6-PDH	G6PD, GPD	oksydoreduktaza D-glukozo-6-fosforan: NADP
transferazy	aminotransferaza asparaginianowa	GOT, AspAT	AST	L-asparagino: α-ketoglu- taran aminotransferaza
•	aminotransferaza alaninowa	GPT, ALAT, SGPT	ALT	transferaza L-alanino-2-oxoglutaran
	kinaza kreatynowa	СРК	СК	fosfotransferaza ATP-kreatyna
	γ-glutamylotranspepty- daza (transferaza)	GGTP	GGT	glutamylotransferaza glutamina: D-glutamyl
	acylotransferaza lecytyna: cholesterol	LCAT	LCAT	lecytyna:cholesterol acyltransferaza
hydrolazy	fosfataza alkaliczna	ALP	ALP	fosfohydrolaza monoe- strów ortofosforanowych (pH alkaliczne)
	fosfataza kwaśna	ACP	ACP	fosfohydrolaza monoe- strów ortofosforanowych (kwaśne pH)
	α-amylaza	AMY	AMS	4-glukanohydrolaza α-1,4 glukagonu
	lipaza triglicerydów	LPS, LP	LPS	acylohydrolaza triglicerydów
	cholinoesteraza	CHE	CHE	acylohydrolaza acylocholiny

Indicative, secretive and excretive enzymes

Tabela 9.3. Klasyfikacja (2) wg sposobu uwalniania enzymów używanych rutynowo w diagnostyce laboratoryjnej

Nazwa	Skrót	Grupa
dehydrogenaza mleczanowa	LDH	wskaźnikowy
dehydrogenaza glutaminowa	GLD	wskaźnikowy
aminotransferaza asparaginianowa	AST	wskaźnikowy
aminotransferaza alaninowa	ALT	wskaźnikowy
kinaza kreatynowa	СК	wskaźnikowy
γ-glutamylotranspeptydaza	GGTP (GGT)	wskaźnikowy/ekskrecyjny
fosfataza alkaliczna	ALP	wskaźnikowy/ekskrecyjny
fosfataza kwaśna	ACP	wskaźnikowy/ekskrecyjny
α-amylaza	AMS	ekskrecyjny
lipaza	LPS, LP	ekskrecyjny
cholinoesteraza	CHE	sekrecyjny
acylotransferaza lecytyna:cholesterol	LCAT	sekrecyjny

Protein phosphatases

• Enzymes that lead, via dephosphorylation, to biological inactivation of protein molecule. In rare cases they can activate protein molecule.

 Enzymes create the system of cooperation with phosphokinases which regulate many physiological processes.

Phosphatases

The conversion of rybonucleotides to rybonucleosides
 During biosynthesis of lipid

Biosynthesis of lipids

1 B

1 A

1A – kinase 1B - dehydrogenase

Exercise 1

Phosphatase hydrolyzes disodium phenylphosphate. The amount of liberated phenol (the measure of enzyme activity) is determined colorimetrically with Folin-Ciocalteu reagent.

Unit of King-Armstrong is expressed in mg of phenol which is liberated from disodium phenylphosphate by enzyme in 100 ml blood plasma or plasma of semen in temperature 37°C during 15 minutes and pH=10 for alkaline phosphatase.

Protocol:

Test tube	0	1	2
Substrate for			
Alkaline	2 cm ³	2 cm ³	2 cm ³
phosphatase			
Blood Plasma	-	0.2 cm ³	0.2 cm ³

Incubation for 30 minutes in 37°C.

Blood Plasma	0.2 cm ³	-	-
Folin reagent	1.8 cm ³	1.8 cm ³	1.8 cm ³

The centrifugation in a laboratory centrifuge for 15 min.

Supernatantant	2 cm ³	1 cm ³	2 cm ³
15% Na ₂ CO ₃	2 cm ³	2 cm ³	2 cm ³

Incubation for 10 minutes in 37°C.

Read the absorbance of samples 0,1,2 against distilled water at a wavelength of 600 nm.

