

Body fluids Physiological and pathological urine

Enter obtained results into the table below.

Parameter			Sample		
			Physiological ur	ine	Pathological urine
Color of urine					-
pH of urine					_
Density of urine					_
Chloride ions					_
Phosphate ions					_
Calcium ions					-
Sulphate ions					_
Protein	With sulphosalicylic				
	acid				
	With trichloracetic				
	acid				
	Reaction of Heller				
Glucose					
Ketone bodies					
Bile pigments		Reaction of Gmelin			
		Reaction of Rosin			

1. Physical properties of physiological urine

Protocol:

1. Color of urine

Urine of majority of animals is transparent and yellow.

2. pH of urine.

The examination of pH of urine is done by use of paper (strip) indicators. pH of urine of carnivorous is between 5,0-7,0, while herbivorous between 7,4-8,2.

3. Density of urine.

Density of urine is examined with urometer. Pour urine into the cylinder and insert urometer. Read off the scale numerical value which represents density of urine in g/cm^3 . Physiological values are between 1,015-1,060 g/cm^3

2. Chemical properties of physiological urine

Protocol.

- 1. Detection of Chloride ions

Take 2 cm³ of urine to glass tube, acidify with few drops of 2 mol/dm³ HNO₃ and add few drops of 0.2% AgNO₃ - as positive result white, caseous precipitate of AgCl will be formed.

UNIVERSITY of LIFE SCIENCES in LUBLIN | FACULTY OF VETERINARY MEDICINE ul. Akademicka 13, Lublin 20-950 phone (+ 81) 445-65-65 ; e-mail: dziek.wet@up.lublin.pl REGON 000001896 NIP 712 010 37 75

- 2. Detection of Phosphate ions

Take 1 cm³ of urine to glass tube, add 1 cm³ concentrated HNO_3 and 2 cm³ ammonium molybdate solution (molibdenian amonu). Heat it carefully over the burner to boil. As positive result yellow precipitate of ammonium phosphoromolybdate will be formed.

3. Detection of Calcium ions

Take 2 cm³ of urine to glass tube, add few drops of 0,2 mol/dm³ CH₃COOH and 0,1 mol/dm³ ammonium oxalate ((NH₄)₂C₂O₄). As positive result white cloudiness of calcium oxalate (CaC₂O₄) will be formed.

4. Detection of Sulphate ions

Take 5 cm³ of urine to glass tube and add few drops of $2 \text{ mol/dm}^3 \text{ HCl}$ and 1 cm^3 of 0,25 mol/dm³ BaCl₂. As positive result white cloudiness of BaSO₄ will be formed.

3. Properties of pathological urine

Protocol.

1. Detection of protein

a. Take 1 cm³ of urine and add 2 drops of 10% sulphosalicylic acid. Precipitate or cloudiness will indicate the presence of protein.

b. Take 1 cm³ of urine and add few drops of 10% $\mathbf{T}ri\mathbf{C}hlor\mathbf{A}cetic$ acid. Cloudiness will indicate the presence of protein.

c. Reaction of Heller – take 1 cm³ of concentrated HNO₃ and gently avoiding mixing of solutions add 1 cm³ of urine. Thin layer of denatured protein will appear on the border between solutions.

2. Detection of glucose

Take 1 cm³ of Benedict reagent and add 0,5 cm³ of urine. Heat it carefully over the burner to boil. As positive result yellow or red precipitate, depending on the content of sugars, will be formed.

3. Detection of ketone bodies - reaction of Legal

Take 1 cm 3 of urine, add 1 cm 3 of 3% nitropruside and 0.5 cm 3 2 mol/dm 3 NaOH. Red color will be formed.

4. Detection of bilirubin

a. Reaction of Gmelin – take 2 cm³ of urine and add gently 1 cm³ of concentrated HNO₃. Green layer on the border between solutions will be formed.

b. Reaction of Rosin - take 2 cm^3 of urine and add gently 0,05 % solution of iodium. Grey-green colour caused by the oxidation of bilirubin to biliwerdin will be formed.

