



# DEPARTMENT OF BIOCHEMISTRY

20-033 Lublin, Akademicka 12 Phone +48 81 445 66 08 www.biochwet.up.lublin.pl

# Body fluids Milk and bile

Experiment 1. Chemical composition of milk

Protocol.

## Obtaining of milk proteins

Take  $10\,\mathrm{cm}^3$  of milk to beaker, add  $20\,\mathrm{cm}^3$   $H_2O$  and 7 drops of glacial  $CH_3COOH$ . Caseous sediment of casein and lipids will precipitate. Drain sediment of casein and lipids with 2 filter papers and remove. Add  $1,5\,\mathrm{cm}^3$  10%  $Na_2CO_3$  to obtained filtrate, pH of sample should be 8 (check with strip indicator). Boil the solution. Precipitated sediment of lactoalbumin and lactoglobulin filtrate with filter paper and remove.

Use obtained filtrate for further determinations:

#### 1. Detection of lactose

Take 1 cm $^3$  of filtrate to glass tube and add 1 cm $^3$  of Benedict or Fehling reagent. Boil for few minutes. As positive result of presence of lactose red sediment of  $\text{Cu}_2\text{O}$  will be formed.

#### 2. Detection of Cl- ions

Take 1 cm $^3$  of filtrate to glass tube, add 4 drops of concentrated HNO $_3$ , and 0,1 mol/dm $^3$  AgNO $_3$ . As positive result white, caseous precipitate of AgCl will be formed.

#### 3. Detection of Ca+2 ions

Take 1 cm³ of filtrate to glass tube and add 0.5 cm³ ammonium oxalate (szczawian amonu -  $(NH_4)_2C_2O_4$ ). As positive result white cloudiness of calcium oxalate  $(CaC_2O_4)$  will be formed.

#### 4. Detection of $PO_4^{-3}$ ions

Take 1 cm $^3$  of filtrate to glass tube, add 1 cm $^3$  of concentrated HNO $_3$  and 0.5 cm $^3$  ammonium molybdate solution (molibdenian amonu). Heat it carefully over the burner to boil. As positive result yellow precipitate of ammonium phosphoromolybdate will be formed.

## Experiment 2. Detection of fat in milk

#### Protocol.

#### 1. Detection of fat in milk

Take 3 cm $^3$  of "Phenoloftalein" milk and add 2 cm $^3$  of pancreatic lipase. After mixing the solutions incubate in  $40^{\circ}$  C. Observe when milk will decolor, explain the course of experiment.

phone (+ 81) 445-65-65 ; e-mail: dziek.wet@up.lublin.pl REGON 000001896 NIP 712 010 37 75



## Experiment 3. Detection of bile acids

#### Protocol.

#### Reaction of Hay with "sulfur flower" (kwiat siarkowy)

Take 2 glass tubes and add 2  $\rm cm^3$  of water to each. Add 1 drop of bile to one tube. Add "sulfur flower" to both tubes and compare the results. "Sulfur flower" will fall down in tube with bile - explain this reaction.

## 2. Emulsifying properties of bile

Take 2 glass tubes and add  $5~{\rm cm^3}$  of water and few drops of oil to both. Add one drop of bile to one tube. Both tubes mix vigorously and observe the behaviour of emulsion in both tubes.

## 3. Reaction of Pettenkofer - detection of bile acids

Take 1 cm $^3$  of bile, add few cristals of sacharose and gently 1 cm $^3$  of concentrated  $\rm H_2SO_4$ . Red ring will be formed on the border between solutions.

## 4. Detection of bilirubin - reaction of Gmelin

Take 1  $cm^3$  of bile and add gently concentrated  $HNO_3$ . Coloured rings of products of bilirubin oxidation will be formed on the border of solutions.

