

Fluids - Blood

Use plasma as "sample" in experiments 1-3

The results of experiments 1 and 2 should be given in the table:

Determination	Result
Detection of Cl ⁻ ions	
Detection of SO_4^{-2} ions	
Detection of HPO_4^{-2} ions	
Detection of Ca ⁺² ions	
Detection of iron ions	
Detection of glucose	

Experiment 1. Detection of inorganic compounds in blood plasma

Protocol

Firstly, the plasma should be deprote inated. Take 2.5 cm^3 of plasma to centrifuge tube, add 2.5 cm³ distilled water and 2.5 cm³ 5% TCA (trichloroacetic acid). Wait 15 min and then centrifuge the tube at 3 000 rpm for 10 min. Obtained deproteinated plasma filtrate can be used for the following tests:

Detection of Cl⁻ ions

Take 0.5 cm^3 of plasma filtrate to glass tube and add 2 drops of 0.2% AqNO₃ - as positive result white, caseous precipitate of AgCl will be formed.

Detection of SO_4^{-2} ions

Take 0.5 cm³ of plasma filtrate to glass tube and add 2 drops of 5% BaCl₂ - as positive result white cloudiness of BaSO₄ will be formed.

Detection of HPO_4^{-2} ions

Take 0.5 cm^3 of plasma filtrate to glass tube, add 0.5 cm^3 ammonium molybdate solution and 0.5 cm^3 concentrated HNO₃. Heat it carefully over the burner to boil. As positive result vellow precipitate of ammonium phosphoro-molybdate will be formed.

Detection of Ca⁺² ions

Take 0.5 cm^3 of plasma filtrate to glass tube, add 0.5 cm^3 ammonium oxalate (NH₄)₂C₂O₄ and add few drops of concentrated NH4OH. As positive result white cloudiness of calcium oxalate

 (CaC_2O_4) will be formed.

Detection of iron ions

Take 0.5 cm³ of plasma filtrate, add few drops of 20% sulpho-salicylic acid solution and add 0.5 cm³ of concentrated NH₄OH. In alkaline environment, iron forms yellow complex with sulpho-salicylic acid.

Experiment 2. Detection of organic compounds in blood plasma

Protocol

Take 0.5 cm³ plasma and add 2 drops of Molisch reagent. Mix and add carefully 1 cm³ of concentrated H_2SO_4 . On the border of the two given reagents, red-violet roundel will be formed.

Experiment 3. Demonstration of buffering properties of the blood Protocol

Use 4 conical flask(Erlenmeyer flasks) marked as 1, 2, 3, and 4:

To flask 1 - add 10 cm³ distilled H_2O and 3 drops of bromophenol blue

To flask 2 - add 9 cm³ distilled H_2O , 1 cm³ plasma, and 3 drops of bromophenol blue

To flask 3 - add 10 \mbox{cm}^3 distilled $\mbox{H}_2\mbox{O}$ and 3 drops of phenolphthalein

To flask 4 - add 9 cm³ distilled H_2O , 1 cm³ plasma and 3 drops of phenolphthalein

Next, to flask 1 add a few drops of 0.1 mol/dm³ HCl to obtain the change of tint (colour). Then, to flask 2, add as many drops of 0.1 mol/dm³ HCl to obtain the same colour as in flask 1. Similarly, to flask 3 add a few drops of 0.1 mol.dm³NaOH to have pink colour and as many NaOH solution to flask 4 to achieve the same, pink colour. Explain, why in flask 2 and 4 you can add so many acid or basic solution.

Experiment 4. The influence of chemical and physical factors on the durability of erythrocytes

Protocol

Take 4 glass tubs and add to each 2 drops of whole blood. Then add: to $1^{st} - 5 \text{ cm}^3 0.9\%$ NaCl to $2^{nd} - 5 \text{ cm}^3$ distilled water to $3^{rd} - 5 \text{ cm}^3 0.9\%$ NaOH and a few drops of chloroform or ether to $4^{th} - 5 \text{ cm}^3 2\%$ NaCl

Mix vigorously each tube and observe what will happen to the erythrocytes. Explain the results achieved in each sample.

