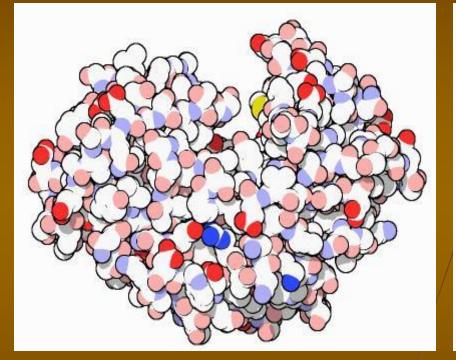
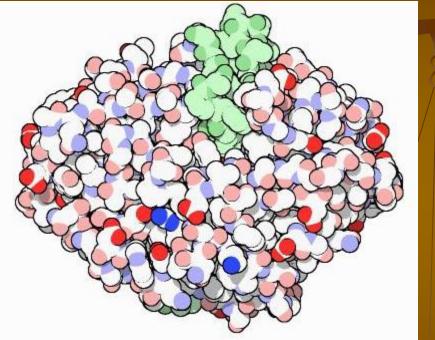
Hydrolases- peptidases (pepsin, trypsin)

The aim of classes:

- Gaining the knowledge on the digestion of proteins and biochemical consequences of the lack of proteolytic activity
- The estimation of the influence of pH on the activity of pepsin
- The estimation of activity of trypsin based on the amount of digested protein determined by biuret method


E.C.3.4.4.1 Pepsin


Characteristics:

- Single chain protein with molecular weight of 34,5 kDa
- Protease of stomach juice
- Produced by cells of mucosa of fundus of stomach
- Inactive form (preenzyme)- Pepsinogen (43 kDa)

Activation:

- Spontaneous process at pH below 5 requires 3 steps
- The presence of HCl assures acidic environment in stomach
- 44 aminoacids are removed and active center of enzyme is exposed. There are 2 β- carboxyl groups (Asp 32 i Asp 215)
- Optimum pH 1-2

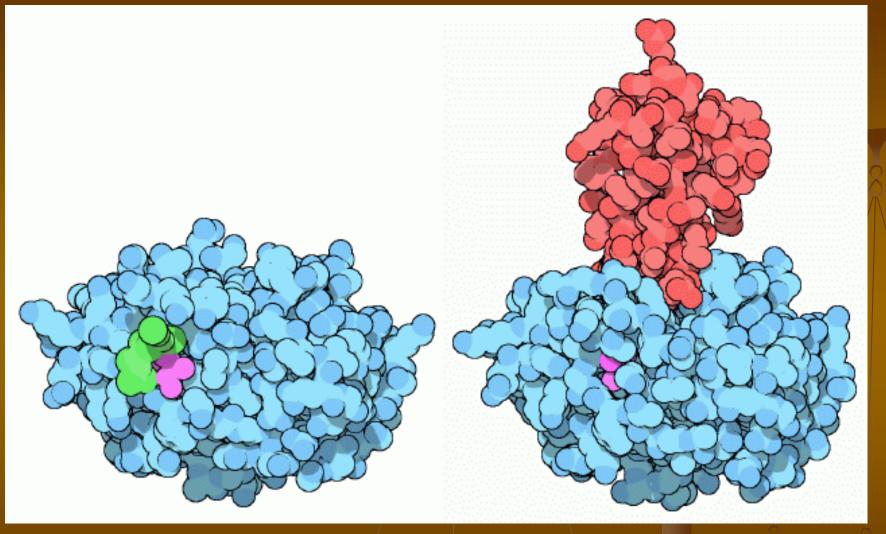
PEPSIN

PEPSINOGEN

Action:

 peptidyl-peptide hydrolase which cleaves peptide bonds in proteins except from keratin and protamin

 Prefers bonds between phenyloalanin and tyrosin with other aminoacids as well as leucin and glutamic acid


E.C.3.4.4.4. Trypsin

Characteristics:

- Low molecular weight protein (24kDa)
- Protease of pancreatic juice
- Produced by pancreatic cells in inactive form of trypsinogen

Activation:

- The participation of enterokinase (enzyme produced by duodenum) is indispensable for the activation
- It is autocatalytic process
- 6-aminoacid fragment is removed and active center of enzyme is exposed – main aminoacids are serine and histidine
- Active form of trypsin influences remaining zymogens of pancreatic juice and converts them into active forms eg. (chymotrypsinogen→ chymotrypsin, proelastase → elastase, procarboxypeptidase →carboxypeptidase)
- Optimum pH 7-9

TRYPSIN

TRYPSINOGEN

Action:

 Peptidyl-peptide hydrolase that cleaves peptide bonds and ester bonds of carboxyl group of lysin and arginin with other aminoacids

E.C.3.4.4.4. Chymotrypsin

- Single chain protein with molecular weight of 24 kDa
- It is synthesised in inactive form in glandular cells of pancreas
- Activation of chymotrypsinogen takes place in small intestine under the influence of trypsin
- Active Chymotrypsin consists of 3 chains linked by thiol bonds

Action

- Enzyme hydrolyses selectively peptide bonds located at carboxyl side of:
- Aromatic groups (Tyr, Trp, Phe)
- Large hydrophobic side chains (Met, Leu)
 Optimal pH 7,5-8,5

Biochemical consequences:

The lack of pepsin activity – protein is only partly degraded in accordance to substrate specificity of pepsin

The lack of trypsin activity (and other of pancreatic origin) – there are no aminoacids for intestine absorption

 the lack of exogenous aminoacids for protein synthesis (alterations in hair, fur, muscles), biologically active substances

Hormones:

Hormones taking part in protein digestion Gastrin

- Stimulates the secretion of HCI
- Stimulates the secretion of stomach juice
- Increases the peristaltics of digestive tract
- Has a trophic effect on the mucous membrane of stomach
- Increases blood flow in intestines
- Secretion is inhibited by:
- The decrease of pH below 2,5
- Secretin
- Somatostatin

Secretin

- Secreted under the influence of acidic pH coming from duodenum
- Stimulates the secretion of pancreatic juice that contains appropriate amount of water and HCO₃⁻ ions
- Increases the secretion of bile and intestine juice
- Inhibits the peristaltics of intestine and stomach

Cholecystokinin (Pancreosymin)

- Stimulates the secretion of pancreatic juice and bicarbonates
- Stimulates the contraction of gallbladder
- Stimulates intestinal motility and inhibits peristaltics of stomach
- Stimulates the secretion of glucagon
- Inhibits the hunger

Absorption of aminoacids:

 The presence of PLP and Mn ions are indispensable

 Cystein is absorbed the most quickly while glutamic and aspartic acid are absorbed the most slowly

Experiment 1

The examination of pepsin activity in different conditions of pH

- **Protocol:** pipete 2 cm³ of pepsin to tubes marked 1, 2, 3, 4. Tube no 4 heat over the burner (inactivation of pepsin). Add the following solutions to appropriate tubes:
- 1 2 cm³ 0,2 mol/dm³ HCl
- 2 2 cm³ 1 mol/dm³ CH₃ COOH
- 3 2 cm³ buffer pH 7,2

Add small amount of protein to all 4 tubes. Incubate tubes in water bath for 1 hour at 37°C. Observe the tubes after incubation and give the number of tube where protein was digested. Explain obtained results.

Experiment 2

The determination of trypsin activity

Protocol: Add 1 cm³ of 30% TCA to three centrifuge tubes and mark them 1, 2, and 3. In glass tube marked "A" prepare incubation mixture containing 4 cm³ of 1% casein in 0,1 mol/dm³ NaHCO₃ and 1 cm³ of trypsin solution. Mix the content carefully and immediately take 1 cm3 of this mixture to centrifuge tube marked 1.

The remaining mixture of tube "A" incubate during 10 min. in temp. 37°C. After 10 min. take 1 cm³ of this mixture and add to centrifuge tubes 2 and 3.
Leave tubes 1, 2, 3 in room temperature for 10 min. and centrifuge them for 15 min. at 2000xg. Remove the supernatant and add 1 cm³ of 1 mol/dm³ NaOH to each tube to resolve the precipitate. After resolving the precipitate add 4 cm³ of cooper reagent to each tube. Mix the solution and leave it in room temperature for 20 min.

In the meantime prepare blank sample by mixing 4 cm³ of cooper reagent and 1 cm³ of distilled water. Read the absorbance of samples 1, 2, 3 at wavelength 540 nm against blank sample. The content of protein in examined solution can be estimated based on standard curve.