Nucleic acids

The aim of the labs: extraction of RNA from yeast cells and detection of its compounds

(Nitrogen bases)

Purines – adenine (A), guanine (G)
 Pyrimidines – cytosine (C), thymine (T), uracil (U)

guanina (G)

Nitrogen bases

Adenine – 6-aminopurine Guanine –2-amino-6-hydroxypurine

Other nitrogen bases

Methyl derivatives of nitrogen bases: Caffeine – 1,3,7-trimethylxanthine

Other nitrogen bases

Hydroxyl derivatives of nitrogen bases:
Hypoxanthine, xanthine and uric acid

Nucleosides

Nucleosides are glycosylamines including purine or pyrimidine base and five-carbon sugar (either ribose or deoxyribose). The glycosidic bond occours between carbon atom 1 in pentose and nitrogen atom 1 in pyrimidine or N9 in purine

Adenosine

Cytidine

guanozyna (9-B-D-rybofuranozyloguanina)

adenozyna (9-β-D-rybofuranozyloadenina)

Nucleotides

Nucleotides are phosphate esters of nucleosides, in which phosphate group is bonded to one of hydroxyl group of pentose:
in deoxyribose: 3`and 5`,

• in ribose: 2`, 3`, 5`

Deoxyadenosine monophosphate

Nucleotide structures

Adenosine 5'-monophosphate

Guanosine 5'-monophosphate

Cytidine 5'-monophosphate

Tymidine 5'-monophosphate

Structure of one strand of DNA

Double-stranded DNA structure

Complementary base pairing

 Adenine = Thymine (two hydrogen bonds)
 Guanine = Cytosine (three hydrogen bonds)

Where base complementarity can be applicable?

Double-stranded DNA structure
Replication
Transcription
Translation
The structure of tRNA

tRNA structure

tRNA

Comparison of DNA and RNA

DNA versus RNA

Nitrogen bases
Sugar
Strand
Types

Features of the genetic code

- three-letter (triplet)
- comma less
- unambiguous
- non-overlapping
- "degenerate"
- universal

Genetic code is non-ambiguous and "degenerate"

UUU Phe UUC Phe UUA Leu UUG Leu	UCU UCC UCA UCG	UAU UAC UAA UAG Stop	UGU Cys UGC Stop UGG Trp
CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAG GIn	CGU CGC CGA CGG
AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAA Lys	AGU AGC AGA AGG Arg
GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG Glu	GGU GGC GGA GGG

Task 1. Extraction of RNA from yeast

The aim of the experiment is to extract RNA from yeast cells and the hydrolysis of extracted RNA to obtain each component of nucleotide.

Yeast homogenization and RNA extraction. Weigh 5 grams of yeast on piece of paper or aluminium foil, put it into a mortar. Add about half a teaspoon of glass sand and grind the mixture using pestle set about 5 minutes. Next start to add drop by drop 2.5 cm³ of 2M NaCl, still continuing grinding during next 3 minutes.

Put the obtained mixture into long glass tube and shake briskly during 10 minutes.

Now, insert the tube with homogenic mixture into boiling water bath for 7 minutes. To prevent cracking the tube, mix the mixture using glass baguette. Next, cool the tube under the stream of tap water and transfer the mixture to a plastic tube.

Centrifuge the tube using the force 2000 x g during 10 min.

Transfer the obtained supernatant to new and clean plastic tube, add to it drop by drop 3 cm³ of chloric acid, and wait 10 minutes for the formation of precipitate.

Next, centrifuge this tube using the force 2000 x g during 10 min. After it, remove the supernatant, add to the tube 6 cm³ of distilled water and dissolve the precipitate by mixing it thoroughly. Transfer this solution to new long, glass tube.

Hydrolysis of obtained RNA. Add to the glass tube including RNA solution 3 cm³ of 10M sulfuric acid. Wait 30 minutes. Next, make the tests for the detection of pentose, purine base and phosphate residues.

Task 2. Detection of each component of nucleotide

The aim of this part of experiment is to detect each component of nucleotide to confirm its composition. Note the results in the table below.

Detection of pentose. Take 1 cm³ of the acidic hydrolysate achieved in task 1 to new glass tube and add 1 cm³ of Bial reagent. Heat the tube carefully over the fire of burner.

Now, to make remaining tests, the acidic hydrolysate must be neutralized by adding 2 cm³ of 2M NH₃.aq.

Detection of purine bases. Take 2 cm³ of neutralized hydrolysate to new glass tube, add 5 drops of 0.1 M AgNO₃ still mixing. Next, add 1 cm³ of 2 M NH₃.aq. Purine bases form silver salts in ammonium solution, and then precipitate.

Detection of phosphate residues. Take 1 cm³ of neutralized hydrolysate to new glass tube, and add 0.5 cm³ of concentrated solution of HNO_3 and 1 cm³ of ammonium molybdate. Heat the tube carefully over the fire of burner and boil the content of the tube about 3 minutes.

Test	Result
Detection of pentose	
Detection of purine bases	
Detection of phosphate residues	

Thank you for your attention