Code of subject	M_WE_SEM1BIOF ANG
Field of study	Veterinary medicine
Name of the training module	Biophysics
including the Polish name	Biofizyka
Language of instruction	English
Module type	Mandatory
Level of studies	Long-cycle master's degree studies
Form of study	Full-time
Location in the programme (year)	1
Location in the programme	1
(semester)	
Number of ECTS credits with a	2 (1.2/0.8)
division into contact/noncontact	
Name and surname of the person	Izabela Świetlicka
in charge	
Unit offering the subject	Department of Biophysics, Faculty of Environmental Biology
Aim of the module	The course aims to familiarise students with the role of
	physics in the functioning and description of the world.
	Students learn the basic laws governing the macro and
	microworld and research methods of biophysics, emphasising
	the role of experiment and theory in its development. The
	subject enables understanding biophysical phenomena and
	processes, relating them to living organisms' functioning, and
	learning the basics of physical phenomena used in medical
	and veterinary diagnostics.
Learning outcomes – the total	Konwledge:
number of learning outcomes may	K1. The student knows the fundamental physical laws and
not exceed (4-8) for the module. A	principles governing the structure, function and behaviour of
description of the intended	living organisms.
learning outcomes that a student	K2. The student has sufficient knowledge to identify and
should achieve after the	understand biophysical phenomena used in the operation of
completion of the module should	selected scientific and research equipment
be provided. The outcomes for all	Skills:
forms of classes used should be	S1. The student can determine fundamental physical
presented.	quantities and interpret performed measurements
	S2. The student can use basic measuring equipment
	S3. The student can use the knowledge of the laws of physics
	to explain the influence of external factors on living
	organisms
	Social competences:
	C1. The student is ready to expand and update its
	knowledge and skills constantly and to share knowledge
	C2. The student is ready for teamwork, communication and
	cooperation
Preliminary and additional	
requirements	No prerequisites and additional requirements
requirements	,

Contents of the training module – a	The module allows the student to supplement and expand
compact description	the knowledge of selected areas of biophysics. Biophysics is
	presented as a coherent science, based on fundamental
	laws. During the lectures, issues related to the basic
	biophysical phenomena and processes occurring in nature
	are discussed, including:
	 Physical quantities, measurement, the system of physical
	units
	Elements of mechanics. Statics and equilibrium conditions.
	Muscles and levers in living organisms.
	 Thermodynamic (energetic) view of living organisms.
	 Transport and exchange of matter, energy and momentum
	in living organisms.
	 Mechanical waves. Auditory sensations and other effects
	of sound waves and the use of their properties in medical
	diagnosis
	Electromagnetic waves. Visual impressions. Biopotentials.
	 Ionizing radiation and its influence on living organisms. The
	use of ionising radiation in diagnostics.
	Elements of information and control theory.
	The program of laboratory classes includes:
	• Experiments in the field of Thermodynamics (Entropy /
	Enthalpy / Blood flow)
	• Experience in the field of matter, energy and momentum
	transport (Viscosity of liquid / Surface tension / Ohm's law /
	Electrolysis)
	• Experiments in the field of mechanical waves (Ultrasound)
	• Experiments in the field of electromagnetic waves
	(Polarimeter / Spectrophotometer / Refractometer / Laser)
	• Experiences in the field of mechanics (Torque / Levers)
Recommended and obligatory	Obligatory:
reading list	1. Physics of Life Science, Jay Newman
	2. Handbook of Physics, W. Benenson, J. W. Harris, H.
	Stocker, H. Lutz
	3. Physics in Biology and Medicine, P. Davidovits
	Recommended
	1. Biophysics: An Introduction, R. Cotterill.
	2. University Physics, W. Moebs, S. L. Ling, J. Sanny
	https://openstax.org/subjects/science
The intended forms/activities/	Lecture, laboratory classes, discussion, consultations,
teaching methods	introductory tests on the knowledge of the laboratory
	exercises performed

Methods of verification and	In terms of knowledge (K1 and K2):
documentation forms of the	• LECTURES: assessment of the final written work (exam)
achieved learning outcomes	0% -50% - unsqatisfactory
	51% - 60% - satisfactory
	61% - 70% - satisfactory plus
	71% - 80% - good
	81% - 90% - good plus
	91% - 100% - very good
	LABORATORY CLASSES
	- preliminary tests (0-5 points, minimum 51% of points to
	pass the laboratory classes)
	- conducting of all laboratory exercises planned in the
	schedule and preparation of the reports
	The final grade for the laboratory classes is determined in
	accordance with the following ranges:
	0% -50% - unsqatisfactory
	51% - 60% - satisfactory
	61% - 70% - satisfactory plus
	71% - 80% - good
	81% - 90% - good plus
	91% - 100% - very good
	The lecturer may increase the grade by 0.5, taking into
	account the student's work during the laboratory classes and
	the evaluation of the reports.
	The lecturer may lower the grade by 0.5, taking into account
	the student's work during the classes and in the event of
	non-compliance with the rules set out in the Health and
	Safety Regulations.
	Forms of documentation: entry into the evaluation system,
	written documentation - students' work
	In terms of skills (S1, S2 and S3): conducting independent
	physical measurements; evaluation of the laboratory
	experiments, assessment of experimental data processing
	Forms of documentation: written documentation - students'
	work
	In terms of competencies (C1 and C2): work in a laboratory
	team during classes, independent (group) conducting
	experiments
	Forms of documentation: written documentation - students'
	work and teacher's notes
	In the suspension of classes at the university and the need
	for e-learning, other verification methods of the learning
	outcomes are going to be implemented in a manner
	appropriate to the situation.

Balance of ECTS credits	Contact 1. Participation in lectures 10h / 0.4 ECTS 2. Participation in laboratory classes 20h / 0.8 ECTS <u>Contact 30h / 1,2 ECTS in total</u> Non-contact: 1. Preparation for laboratory exercises 1h / 0.04 ECTS 2. Preparation for preliminary tests 6h / 0.24 ECTS 3. Preparation of reports on laboratory exercises 5h / 0.2 ECTS
	4. Preparation for the exam 8h / 0.32 ECTS <u>Non-contact 20h / 0.8 ECTS in total</u> TOTAL: 50h: 25h / ECTS = 2 ECTS
Number of contact hours	 Participation in lectures 10h Participation in laboratory classes 20h A total of 30 hours
Relationship between subject learning outcomes and veterinary studies learning outcomes	K1 –A.W4 +, A.W7 +++ A.W8 ++ K2 – A.W11 ++, B.W4 + S1 – A.U2 + S2 – A.U2 ++ S3 – A. U1 +++ C1 – K.8 ++ C2 – KS3 ++, K.9 ++
Impact of selected compounds to final grade	 Final grade: exam results in the case of very good results (91-100% of points) from the laboratory classes, the possibility of exemption from the exam with a very good (5.0) grade.